Benchmarks.AI Home About Feedback
COCO Panoptic Segmentation link
COCO panoptic segmentation.
Method (expand all | collapse all) Panoptic Quality (PQ)
Daan de Geus, Panagiotis Meletis, Gijs Dubbelman
We present an end-to-end method for the task of panoptic segmentation. The method makes instance segmentation and semantic segmentation predictions in a single network, and combines these outputs using heuristics to create a single panoptic segmentation output. The architecture consists of a ResNet-50 feature extractor shared by the semantic segmentation and instance segmentation branch. For instance segmentation, a Mask R-CNN type of architecture is used, while the semantic segmentation branch is augmented with a Pyramid Pooling Module. Results for this method are submitted to the COCO and Mapillary Joint Recognition Challenge 2018. Our approach achieves a PQ score of 17.6 on the Mapillary Vistas validation set and 27.2 on the COCO test-dev set.