Benchmarks.AI Home About Feedback
MPI Sintel link
MPI Sintel dataset for optical flow.
Method (expand all | collapse all) End-Point Error (EPE)
Michal Neoral, Jan Šochman, Jiří Matas
Two optical flow estimation problems are addressed: i) occlusion estimation and handling, and ii) estimation from image sequences longer than two frames. The proposed ContinualFlow method estimates occlusions before flow, avoiding the use of flow corrupted by occlusions for their estimation. We show that providing occlusion masks as an additional input to flow estimation improves the standard performance metric by more than 25% on both KITTI and Sintel. As a second contribution, a novel method for incorporating information from past frames into flow estimation is introduced. The previous frame flow serves as an input to occlusion estimation and as a prior in occluded regions, i.e. those without visual correspondences. By continually using the previous frame flow, ContinualFlow performance improves further by 18% on KITTI and 7% on Sintel, achieving top performance on KITTI and Sintel.
Zhile Ren, Orazio Gallo, Deqing Sun, Ming-Hsuan Yang, Erik B. Sudderth, Jan Kautz
To date, top-performing optical flow estimation methods only take pairs of consecutive frames into account. While elegant and appealing, the idea of using more than two frames has not yet produced state-of-the-art results. We present a simple, yet effective fusion approach for multi-frame optical flow that benefits from longer-term temporal cues. Our method first warps the optical flow from previous frames to the current, thereby yielding multiple plausible estimates. It then fuses the complementary information carried by these estimates into a new optical flow field. At the time of submission, our method ranks first among published flow methods in the MPI Sintel and KITTI 2015 benchmarks.
Deqing Sun, Xiaodong Yang, Ming-Yu Liu, Jan Kautz
We investigate two crucial and closely related aspects of CNNs for optical flow estimation: models and training. First, we design a compact but effective CNN model, called PWC-Net, according to simple and well-established principles: pyramidal processing, warping, and cost volume processing. PWC-Net is 17 times smaller in size, 2 times faster in inference, and 11% more accurate on Sintel final than the recent FlowNet2 model. It is the winning entry in the optical flow competition of the robust vision challenge. Next, we experimentally analyze the sources of our performance gains. In particular, we use the same training procedure of PWC-Net to retrain FlowNetC, a sub-network of FlowNet2. The retrained FlowNetC is 56% more accurate on Sintel final than the previously trained one and even 5% more accurate than the FlowNet2 model. We further improve the training procedure and increase the accuracy of PWC-Net on Sintel by 10% and on KITTI 2012 and 2015 by 20%. Our newly trained model parameters and training protocols will be available on
Deqing Sun, Xiaodong Yang, Ming-Yu Liu, Jan Kautz
We present a compact but effective CNN model for optical flow, called PWC-Net. PWC-Net has been designed according to simple and well-established principles: pyramidal processing, warping, and the use of a cost volume. Cast in a learnable feature pyramid, PWC-Net uses the cur- rent optical flow estimate to warp the CNN features of the second image. It then uses the warped features and features of the first image to construct a cost volume, which is processed by a CNN to estimate the optical flow. PWC-Net is 17 times smaller in size and easier to train than the recent FlowNet2 model. Moreover, it outperforms all published optical flow methods on the MPI Sintel final pass and KITTI 2015 benchmarks, running at about 35 fps on Sintel resolution (1024x436) images. Our models are available on