Method (expand all | collapse all) | Word Error Rate (WER) | |
---|---|---|
English Conversational Telephone Speech Recognition by Humans and Machines (Mar 2017) | 5.5% | |
One of the most difficult speech recognition tasks is accurate recognition of human to human communication. Advances in deep learning over the last few years have produced major speech recognition improvements on the representative Switchboard conversational corpus. Word error rates that just a few years ago were 14% have dropped to 8.0%, then 6.6% and most recently 5.8%, and are now believed to be within striking range of human performance. This then raises two issues - what IS human performance, and how far down can we still drive speech recognition error rates? A recent paper by Microsoft suggests that we have already achieved human performance. In trying to verify this statement, we performed an independent set of human performance measurements on two conversational tasks and found that human performance may be considerably better than what was earlier reported, giving the community a significantly harder goal to achieve. We also report on our own efforts in this area, presenting a set of acoustic and language modeling techniques that lowered the word error rate of our own English conversational telephone LVCSR system to the level of 5.5%/10.3% on the Switchboard/CallHome subsets of the Hub5 2000 evaluation, which - at least at the writing of this paper - is a new performance milestone (albeit not at what we measure to be human performance!). On the acoustic side, we use a score fusion of three models: one LSTM with multiple feature inputs, a second LSTM trained with speaker-adversarial multi-task learning and a third residual net (ResNet) with 25 convolutional layers and time-dilated convolutions. On the language modeling side, we use word and character LSTMs and convolutional WaveNet-style language models. |
||
The Microsoft 2016 Conversational Speech Recognition System (Sep 2016) | 6.2% | |
We describe Microsoft's conversational speech recognition system, in which we combine recent developments in neural-network-based acoustic and language modeling to advance the state of the art on the Switchboard recognition task. Inspired by machine learning ensemble techniques, the system uses a range of convolutional and recurrent neural networks. I-vector modeling and lattice-free MMI training provide significant gains for all acoustic model architectures. Language model rescoring with multiple forward and backward running RNNLMs, and word posterior-based system combination provide a 20% boost. The best single system uses a ResNet architecture acoustic model with RNNLM rescoring, and achieves a word error rate of 6.9% on the NIST 2000 Switchboard task. The combined system has an error rate of 6.2%, representing an improvement over previously reported results on this benchmark task. |
||
The IBM 2016 English Conversational Telephone Speech Recognition System (Apr 2016) | 6.6% | |
We describe a collection of acoustic and language modeling techniques that lowered the word error rate of our English conversational telephone LVCSR system to a record 6.6% on the Switchboard subset of the Hub5 2000 evaluation testset. On the acoustic side, we use a score fusion of three strong models: recurrent nets with maxout activations, very deep convolutional nets with 3x3 kernels, and bidirectional long short-term memory nets which operate on FMLLR and i-vector features. On the language modeling side, we use an updated model "M" and hierarchical neural network LMs. |
||
The IBM 2015 English Conversational Telephone Speech Recognition System (May 2015) | 8.0% | |
We describe the latest improvements to the IBM English conversational telephone speech recognition system. Some of the techniques that were found beneficial are: maxout networks with annealed dropout rates; networks with a very large number of outputs trained on 2000 hours of data; joint modeling of partially unfolded recurrent neural networks and convolutional nets by combining the bottleneck and output layers and retraining the resulting model; and lastly, sophisticated language model rescoring with exponential and neural network LMs. These techniques result in an 8.0% word error rate on the Switchboard part of the Hub5-2000 evaluation test set which is 23% relative better than our previous best published result. |