Benchmarks.AI Home About Feedback
WMT English-German link
Machine translation between English and German.
Method (expand all | collapse all) BLEU (newstest2014) BLEU (newstest2015) BLEU (newstest2016)
Rico Sennrich, Barry Haddow, Alexandra Birch
We participated in the WMT 2016 shared news translation task by building neural translation systems for four language pairs, each trained in both directions: English<->Czech, English<->German, English<->Romanian and English<->Russian. Our systems are based on an attentional encoder-decoder, using BPE subword segmentation for open-vocabulary translation with a fixed vocabulary. We experimented with using automatic back-translations of the monolingual News corpus as additional training data, pervasive dropout, and target-bidirectional models. All reported methods give substantial improvements, and we see improvements of 4.3--11.2 BLEU over our baseline systems. In the human evaluation, our systems were the (tied) best constrained system for 7 out of 8 translation directions in which we participated.
Jonas Gehring, Michael Auli, David Grangier, Yann N. Dauphin
The prevalent approach to neural machine translation relies on bi-directional LSTMs to encode the source sentence. In this paper we present a faster and simpler architecture based on a succession of convolutional layers. This allows to encode the entire source sentence simultaneously compared to recurrent networks for which computation is constrained by temporal dependencies. On WMT'16 English-Romanian translation we achieve competitive accuracy to the state-of-the-art and we outperform several recently published results on the WMT'15 English-German task. Our models obtain almost the same accuracy as a very deep LSTM setup on WMT'14 English-French translation. Our convolutional encoder speeds up CPU decoding by more than two times at the same or higher accuracy as a strong bi-directional LSTM baseline.
Junyoung Chung, Kyunghyun Cho, Yoshua Bengio
The existing machine translation systems, whether phrase-based or neural, have relied almost exclusively on word-level modelling with explicit segmentation. In this paper, we ask a fundamental question: can neural machine translation generate a character sequence without any explicit segmentation? To answer this question, we evaluate an attention-based encoder-decoder with a subword-level encoder and a character-level decoder on four language pairs--En-Cs, En-De, En-Ru and En-Fi-- using the parallel corpora from WMT'15. Our experiments show that the models with a character-level decoder outperform the ones with a subword-level decoder on all of the four language pairs. Furthermore, the ensembles of neural models with a character-level decoder outperform the state-of-the-art non-neural machine translation systems on En-Cs, En-De and En-Fi and perform comparably on En-Ru.
Rico Sennrich, Barry Haddow, Alexandra Birch
Neural machine translation (NMT) models typically operate with a fixed vocabulary, but translation is an open-vocabulary problem. Previous work addresses the translation of out-of-vocabulary words by backing off to a dictionary. In this paper, we introduce a simpler and more effective approach, making the NMT model capable of open-vocabulary translation by encoding rare and unknown words as sequences of subword units. This is based on the intuition that various word classes are translatable via smaller units than words, for instance names (via character copying or transliteration), compounds (via compositional translation), and cognates and loanwords (via phonological and morphological transformations). We discuss the suitability of different word segmentation techniques, including simple character n-gram models and a segmentation based on the byte pair encoding compression algorithm, and empirically show that subword models improve over a back-off dictionary baseline for the WMT 15 translation tasks English-German and English-Russian by 1.1 and 1.3 BLEU, respectively.
Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, Yann N. Dauphin
The prevalent approach to sequence to sequence learning maps an input sequence to a variable length output sequence via recurrent neural networks. We introduce an architecture based entirely on convolutional neural networks. Compared to recurrent models, computations over all elements can be fully parallelized during training and optimization is easier since the number of non-linearities is fixed and independent of the input length. Our use of gated linear units eases gradient propagation and we equip each decoder layer with a separate attention module. We outperform the accuracy of the deep LSTM setup of Wu et al. (2016) on both WMT'14 English-German and WMT'14 English-French translation at an order of magnitude faster speed, both on GPU and CPU.